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Abstract— Adsorption energies of small molecules carbon monoxide and hydrogen are studied using density 
functional theory and the neural network method of generating higher dimensional potential energy surfaces. Various 
lower index surfaces of platinum metal are considered, and the adsorption energies appear to increase according to: 
Pt (211) > Pt (100) > Pt (110) > Pt (111) with the adsorption of both molecules. The large adsorption energies mean 
only energetic interactions with the ions from air such as oxygen ion can detach the adsorbates from the surface 
thereby forming water and carbon monoxide as by-products. Exploring possible adsorption sites gives insight on better 
ways in which charge exchanges are maximized while at the same time forming of the by-products becomes efficient. 
The adsorption energies range between 0.85 eV to 2.08 eV with the adsorption of CO while the values are between 
1.30 eV to 1.9 eV with the adsorption of hydrogen. Charge transfers give some insight into the study of electrification 
process in the system. These values are computed to be about 0.37e with the adsorption of hydrogen and up to 0.24e 
with the adsorption of carbon monoxide. Training of the system potential energies using the neural network method 
shows promising opportunity to study further complex problems in such systems. 

Key words— Neural networks, machine learning, density functional theory calculations, hydrogen, carbon monoxide, 
platinum, fuel cells.   

——————————    —————————— 
1 INTRODUCTION     

One of the common applications of Platinum is in a 
build up of a polymer electrolyte fuel cells (PEMFC). It 
has proven to be the standard catalyst for many 
oxidation and reduction reactions in both acidic and 
basic electrolytes and would be an ideal candidate for 
high power catalysts. Fuel cells have the potential to 
be clean and efficient way to run cars, computers, and 
power stations, where Platinum is an exciting 
component as catalyst [1]. H2 and O2 molecules are 
among the ions expected to dominate in the 
electrolyte region of the cells. A study of Interactions 
of such molecules with the surfaces are catching 
interests of many works [2], [3].   

 

 

Atomistic calculations are nowadays being actively 
used to study systems at atomic, molecular, or large 
length scales. The calculations often involve the 
obtaining of potential energy surface (PES), where 
the PES describes the potential energy of a system 
as a function of the atomic nuclei positions. Atomic 
interactions within large many body systems often 
have complicated forms where the exact value is 

impossible to determine. As a result, only either a 
crude or reasonable approximations have been 
enabling a study of problems in such systems, where 
among those one is a density functional theory 
method (DFT) [4]. 
DFT method uses reasonable approximations, and so 
as such enabled a study of a relatively larger systems 
which would otherwise be impossible to make in a 
feasible time. However, the studies of many more 
properties such as ligand interactions with protein 
macromolecules, mechanical and electro-mechanical 
field effects, response of nanostructures to loadings in 
material science, etc, still require improved 
computational methodologies or computing speeds 
than the currently available facilities. This bottleneck 
in the computational power can be expected to persist 
in the forseeable future. 

While the use of multiscale methods is seen as a 
solution strategy for a study of problems in such 
systems, applications of such methodologies is 
impractical at the present condition of the computing 
power. Due to a large set of Kohn-Sham density 
functional theory (KS-DFT) equations required to be 
solved, it becomes time consuming to solve problems 
of large systems. As a result, in an attempt of 
studying problems in many complex systems, multiple 
alternative simulation methods such as machine 
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learning of electronic structure methods combined 
with monte carlo simulations [5], and also machine 
learning of electronic structure methods combined 
with molecular dynamics simulations [6], [7], [8], [9], 
[10], [11] are on the rise. Such approaches would 
undoubtly be expected to be chosen by many as 
fronts of research over the next couple of years. In 
this paper, we emphasize on machine learning using 
neural network architecture where an electronic 
structure method is a trainee. Ever since of early 
works on machine learning [12] and neural network 
conceptuals [13] for a use in scientific research [14], 
now there are dozens of papers made available in 
various journals [6], [7]. We choose the approach of 
Behler et al [6], for building higher dimensional 
potential energy surfaces from the electronic structure 
calculations, and use the implementation in machine 
learning according to the works by Peterson group at 
Brown University [15]. 

Nowadays, the presence of many DFT calculators 
interfaces in atomic simulation environment (ASE) 
[16] has made it easy to use atomic models along 
with DFT codes in a single python script instruction. 
With recent facility of Amp [17] being also accessible 
in ASE package, it is possible to make use of 
interactive collaboration of Amp with electronic 
structure calculators within ASE. 

While such approach would be useful in being applied 
to solve various real problems in materials over the 
near futures, here in this work, we apply it to study 
adsorptions on Platinum surfaces. The current work, 
thus, has two fold purposes. First, it gives insight on 
how to develop this approach of study further so to be 
able to get detail insights into problems in real 
materials such as fuel cells. Secondly, reactivities of 

various surfaces of Platinum with molecules: H2 , O2 , 
and CO is studied using the current progress, and the 
result of this can be seen as a phenomena taking 
place on some part of real fuel cells. A brief look at 
the inside outlook of the a proton membrane fuel cell 
can be seen as in the Fig. 1, where the following 
basic equations can be seen to take place. 

Figure 1: The inside of a polymer electrolyte fuel cells 
where the anodes and cathodes are made of platinum 
metals. The dissociative and combination reactions 
are supposed to take place at anodes and cathodes 
where platinum acts as a catalyst, see equation 
equations (1)-(4). 

CO + Pt → Pt − CO                                                     
(1) 
H2 + 2Pt → 2(Pt − H)                                                  
(2) 

2(Pt − H) → 2H+  + Qads  + 2Pt                                   
(3) 

 H2O + (Pt − CO) → P t  +  CO2  +  2H+  + Qads ,      (4) 

where Q ads is the charge received and then donated 
by the adsorbate upon interacting with the Platinum 
surfaces, see Tables in section 3. The paper is 
organized as follows. In the next section sec. 2, detail 
account of the computational method is presented. 
Results and discussions are presented in section 3, 
with the conclusion presented in section 4. 

2 METHODS 

We have used two different flavors of numerical 
simulations: the density functional theory method, and 
the atomistic machine learning (ML) method, as 
described below. 

2.1 DFT method 
The calculations required for this work were 
performed using an Ab-initio Simulation Package 
called GPAW [18], [19], [20]. Gpaw has a capacity to 
compute a total energy, a charge density, and the 
electronic structure of a periodic systems composed 
of electrons and nuclei based on pseudopotentials 
and a plane wave basis. The program is based on 
density functional theory (DFT) in the Kohn-Sham 
scheme [4]. All information about the Gpaw package 
can be found at the homepage [21]. The electron 
wavefunctions are expanded in a plane wave having 
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a band, a k-points, and a grid index. The 
corresponding electron density is given as a sum over 
the squared wave-function. The k-points grid are 
produced according to Monkhorst-Pack scheme [22] , 
in what is some times called as special points, and 
which results to a set of points equally spaced in the 
Brillouin zone (BZ) that are not related to each other 
by any symmetry operation. Periodic boundary 
conditions are applied to the unit cell, and the plane 
waves cut off energy used is 400 eV. A k-point mesh 
of 4×4×1, 2×4×1, and 2×2×1 are used in (1×1), (2×1), 
and (2×2) surface unit cells, respectively. These 
results to up to about 16 optimized ki’s within BZ. The 
exchange-correlations energies are approximated 
within the the generalized gradient approximation of 
PBE [23]. The pseudopotentials for the interactions of 
valence electrons with ion-cores were represented by 
the plane wave based implementation of the projector 
augemented wave (paw) method [24], [25]. The 
number of valence electrons considered in the 
pseudopotential code is Pd: 10, C: 4, and O: 6. A van 
der Waals treatment of DFT-D3 type based on the 
works in literatures [26] is applied, and is found to 
improve the energetics by up to 0.5 eV. The influence 
of zero point energy on the energetics of the 
adsorption is less than 0.1 eV. So, the calculations 
work presented for our system excluded the effect of 
the latter conceptual [27]. 

Adsorption energies are calculated by 

Eads = -(ESM - ES - EM ),                                                   
(5) 

Here, ES , EM , and ESM are the total energies of the 
clean surface, isolated molecule, and relaxed 
geometry containing both substrate and molecule, 
respectively. All energies are per supercell. The 
isolated molecules are relaxed in a cubic unit cell of 
side length 15 Å.  A vacuum layer of 10 Å is used in 
all the adsorption calculations. As such, positive 
values in energies indicate exothermic reactions while 
negative values denote endothermic. The vibrational 
frequencies are obtained by diagonalization of the 
Hessian Matrix which in turn is constructed by finite 
diference method where every atom is displaced 
along the three orthogonal directions by 0.015 Å. 
Complete structural optimitions of the microscopic 
(atomic coordinates) and macroscopic (unit cell) 
degrees of freedom are obtained using Hellmann-
Feynman forces [28] and stresses [29]. Ab-initio 
molecular dynamics (MD) is done using the 

Hellmann-Feynman forces calculated on the Born-
Oppenheimer (BO) surface [30] The convergence 
criteria for the forces were set at 0.1 meV/Å. The 
bader analysis [31] of charges is based on work by 
Henkelman et al. [27] and Sanville et al. [32]. The 
reaction paths are calculated with the nudged elastic 
band (NEB) method [33], [34], and the minimum 
energy paths are searched for using a quasi- Newton 
iterative scheme by mapping out images between two 
preset geometries. 

2.2 Atomistic machine learning method 
A neural network based on the concepts suggested 
by Behler-Parrinello [6] and implemented using 
atomistic machine learning package (Amp) [17] is 
used. Such a new approach of using models derived 
by machine learning (ML) has started during the past 
decade. In this approach, a large databases of 
calculations from density functional theory is used to 
build neural network models of atomistic systems. 

A lot of progress has been made in recent years in 
the development of atomistic potentials using ML 
techniques. ML potentials rely on simple but very 
flexible mathematical terms without a direct physical 
meaning [35]. In case of ML potentials, the topology 
of the potential energy surface is learned by adjusting 
a number of parameters with the aim to reproduce a 
set of reference electronic structure data as 
accurately as possible. Consequently, in ab-initio 
molecular dynamics (MD), the energies and forces 
need to be calculated ”on-the-fly”, typically using 
density functional theory (DFT). Alternatively, an 
analytic expression for the potential energy surfaces 
(PES) can be constructed and used in the 
simulations, which allows to perform MD simulations 
more efficiently as the evaluation of such expressions 
is much faster than solving the quantum mechanical 
problem. 

Artificial neural networks (NNs) [36], [37] have been 
introduced in 1943 to model and understand the 
signal processing in the brain [38], and in the 
following decades they have found wide use in many 
fields of science [39] due to their pattern recognition 
and data classification capabilities. There are many 
types of NNs with different functional forms. A general 
definition covering all these types has been given by 
Kohonen [40]. Artificial neural networks are massively 
parallel interconnected networks of simple (usually 
adaptive) elements and their hierarchical 
organizations which are intended to interact with the 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 4, April-2019                                                                         11 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org 

objects of the real world in the same way as biological 
nervous systems do. For modelling a PES, the input 
layers are the Cartesian-coordinates of a system with 
a fixed number of atoms. The nodes of the hidden 
layers are linear combinations of these coordinates 
with varying weights. The flexible nature of these 
models makes them ideal candidates for advanced 
simulation, such as (monte carlo) MC and MD 
applications. Standard multilayer feed-forward 
networks with as few as one hidden layer using 
arbitrary squashing functions are capable of 
approximating any function from one finite 
dimensional space to another to any desired degree 
of accuracy, provided that sufficiently many hidden 
units are available. 

Within this way of constructing the atomistic 
potentials, the remarkable resultis that there is no 
fundamental restriction in the accuracy that can be 
achieved when constructing potentials using neural 
networks (NNPs), which is an important difference to 
physical potentials having intrinsic limitations due to 
their rather inflexible functional forms. In the past two 
decades, NNPs have been constructed for many 
types of systems. 

Most conventional NNPs use a single machine 
learning feed-forward neural network (MLFF NN) to 
construct a direct functional relation between the 
atomic configuration and the potential energy. For this 
purpose, a number of artificial neurons is organized in 
several layers. The potential energy E is obtained in 
the neuron, or node, in the output layer. A typical NN 
architecture contains two to three hidden layers and 
up to typically about 50 nodes per layer. The entity of 
all layers including the input and output layer as well 
as the number of nodes per layer defines the 
architecture of the NN. 

The total energy of the system is given as 

𝐸𝐸𝑠𝑠 = ∑ 𝐸𝐸𝑖𝑖
𝑁𝑁atom
𝑖𝑖=1                                                               

(6) 

where, Es − is energy of the system, and Ei − is 
atomic energy contributions. The atomic energy 
contributions depend on the local chemical 
environments up to a cutoff radius Rc . This cutoff 
radius, which typically has a value between 6 and 10 

Å, is a convergence parameter and needs to be 
tested to ensure that all energetically relevant 
interactions are included. The positions of the 
neighboring atoms within the resulting cut-off sphere 
are then described by a set of many body symmetry 
functions. The resulting high dimensional NN 
approach composes the following. For each atom, 
there is a separate line starting from the Cartesian 
coordinate vector R of the atom. In the next step, a 
vector of many body symmetry functions G is 
constructed for each atom, which describes the 
arrangement of all atoms in the chemical 
environment. 

By defining a cutoff radius large enough for all atomic 
interactions to be taken into consideration, the system 
needs only calculate and sum the energy contribution 
of each local environment to obtain the total energy. 
For example, a system of two gas-phase atoms in the 
ideal gas limit can be described by the six Cartesian-
coordinates of the atoms, but in this simple case the 
single variable which represents the distance between 
the two atoms is sufficient to represent the entire 
PES. This way, only one feed-forward NN per type of 
element is needed. This approach makes a very 
diverse range of applications accessible to a single 
potential. It also creates an opportunity for combining 
a more diverse range of training sets which creates 
future possibilities for more chemically advanced 
applications. We have studied how DFT should be 
trained to get a Behler-Parrinello neural network 
(BPNN) atomistic potentials which is accurate and 
tractable across multiple structural regimes of 
palladium material. 

The Behler-Parrinello NN produced with the lowest 
root-mean-squared error (RMSE) was used in this 
work. This NN utilises 2 hidden layers with 2 and 12 
nodes and a hyperbolic tangent activation function. A 
total of 20 symmetry functions were used for all atoms 
of adsorbate, and Pd for a total of 40 functions. 

Studies of some insight into reaction processes within 
the fuel cell systems are modelled with adsorptive 
interactions, where the adsorbate are attached to the 
surfaces with single, bi-, and tri-, coordination 
numbers with the surfaces, denoted respectively, as 
hollow (H), bridge (B), and atop (T), respectively, as 
shown in Fig. 2. 
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Figure 2: Top view of surface Pt atoms. Color online: 
Colors (dark grey- Pt atoms). Adsorption sites are 
indicated by red color bold face letters, where H-
means hollow site, B-means bridge site, and T-means 
atop sites. These terms are to be used frequently in 
the presentation of the results in section 3. 

3 RESULTS AND DISCUSSIONS 
The calculated lattice constant and Bulk modulus of 
the Face centered cubic structure of the Platinum 
system is a =3.97 Å and B = 268.05 GPa, 
respectively. These values are closely related to 
experimental works a =3.96 Å [41], a =3.96 Å [42] and 
theoretical works of a =3.91 Å [42]. The author 
believes that these closely related outcomes validate 
the methods (section 2.1) used in this study. 
Stabilities of surfaces prior to the adsorptive 
interaction can be determined according to the 
equation 

𝜎𝜎 =
1
2
�𝐸𝐸slab −

𝑁𝑁slab
𝑁𝑁bulk

𝐸𝐸bulk� 

where, Eslab refers to total energy of symmetric slab, 
Nslab refers to number of atoms in the slab, Nbulk refers 
to number of atoms in the bulk unit cell, and Ebulk is 
total energy of a bulk unit cell. Accordingly, the 
surface energy and hence the stability of Pt(111) > 
Pt(100) > Pt(110) > Pt(211). Such studies of surface 
energies is often calculated [43] and the implications 
are there described. Within the study of the adsorptive 
interaction of these surfaces with adsorbate 

molecules carbon monoxide and hydrogen, the 
outcomes of the investigation is presented in the the 

following subsections. 
3.1 Pt(100) surface 

With the adsorption of carbon monoxide on 
Pt(100) surface, Table 1, adsorption energy 
increases according to 𝐸𝐸ads

𝐵𝐵 > 𝐸𝐸ads
𝑇𝑇 > 𝐸𝐸ads

𝐻𝐻 , 
where B-, T -, and H-, denote bridge, top, and 
hollow adsorption sites, respectively, see Fig. 2. 
The vibration energy can be related to the 
vibration frequency according to Evib = hcν. With 
this, the vibration energies are 0.23 eV, 0.20 eV, 
and 0.19 eV, respectively, at atop, bridge, and 
hollow sites. Accordingly, all the vibration 
energies are within measures of error [44] and 
do not exceed 0.20 eV.  

 

 
Table 1: Adsorption of CO and H2 molecules on 
Pt(100) surface, as calculated using DFT method 
(section 2.1). Adsorbate coverage is given in mono-
layer (ML) where 1 ML means 1 adsorbate species 
per surface slab supercell. Thus, 1 ML means 
adsorption on (1×1) surface unit cells. Eads means 
adsorption energy in eV, ν means vibration frequency 
of the bond between surface Pt atoms and adsorbate 
in unit cm−1, ∆Qpt represents change in magnitude of 
charge of surface Pt atom in unit e, and ∆Qads 
represents change in magnitude of charge of 
adsorbate atom in unit e. 

CO 

CO 
coverage 
[ML] 

Adsorption 
site 

Eads 
[eV] 

ν [cm−1] ∆Qpt [e] ∆Qads 
[e] 

 

1 

atop 1.38 1984.89 -0.11 +0.11 

bridge 1.80 1814.69 -0.17 +0.17 

hollow 0.85 1745.79 -0.37 +0.37 

H2 
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H2 
coverage 
[ML] 

Adsorption 
site 

Eads 
[eV] 

ν [cm−1] ∆Qpt [e] ∆Qads 
[e] 

 

1 

atop 1.49 2448.16 -0.02 +0.02 

bridge 1.88 984.09 -0.05 +0.05 

hollow 1.61 133.62 -0.02 +0.02 

This means that such considerations can be 
overlooked since the impacts on the total adsorption 
energy is negligible. However, the trends in the 
vibration energies tell us something about the 
strength of the bonding between the adsorbate and 
the surface atoms. Accordingly, it appears that in 
terms of the stability of the bounding of the adsorbate, 
adsorption at H > B > T . From charge transfer point 
of view, relatively a larger charge transfer takes place 
at hollow site followed by at bridge site, and at atop 
sites. While this ordering is similar to that with 
vibration, it is slightly different from that with the 
adsorption energies. While vibrations and charge 
transfers relate to coordination numbers, adsorption 
energies seem to greatly depend on lateral 
interactions. That is, at this adsorbate coverage, 
lateral interactions between adsorbates is weaker for 
adsorption at hollow site followed by adsorption at 
atop site followed by adsorption at bridge site. 
Regarding adsorption of H2 on the Pt(100) surface, 
the adsorption energy increases according to: 

𝐸𝐸ads
𝐵𝐵 > 𝐸𝐸ads

𝐻𝐻 > 𝐸𝐸ads
𝑇𝑇 . With the vibration energies 

calculable with as described above, the values are 
0.28 eV, 0.11 eV, and 0.01 eV, respectively, for atop, 
bridge, and hollow sites. Correspondingly, thus, the 
stability of the adsorbate with the surfaces appears to 
increase according to hollow followed by at bridge site 
followed by at atop site. With charge, large charge 
transfer is for adsorption at bridge site followed by 
with about equals of the adsorptions at hollow and 
atop sites. In this case, while analysis with charge 
transfers and adsorption energies indicate similar 
trends regarding the strengths of the adsorptions, 
analysis with vibrations indicate slightly a different 
trend. However, in summary, adsorption at bridge site 
seems to be the most preferred at 1 ML of the 
adsorbate coverage on the Pt(100) surface. 

3.2 Pt(111) surface 
Here adsorption of CO and H2 molecules from 0.25 
ML - 1 ML is studied, Table 2. With the adsorption of 
CO molecule, the adsorption energies in ascending 
order is seen as:  𝐸𝐸ads

𝐵𝐵 > 𝐸𝐸ads
𝐻𝐻 > 𝐸𝐸ads

𝑇𝑇  at 1 ML.      
At 0.5 ML, 𝐸𝐸ads

𝐻𝐻 > 𝐸𝐸ads
𝐵𝐵 > 𝐸𝐸ads

𝑇𝑇    and at 0.25 
ML,𝐸𝐸ads

𝐵𝐵 > 𝐸𝐸ads
𝐻𝐻 > 𝐸𝐸ads

𝑇𝑇  .  
Table 2: Adsorption of CO and H2 molecules on 
Pt(111) surface, as calculated using DFT method 
(section 2.1). Adsorbate coverage is given in mono-
layer (ML) where 1 ML means 1 adsorbate species 
per surface slab supercell. Thus, 1 ML means 
adsorption on (1×1), 0.5 ML means adsorption on 
(2×1), and 0.25 ML means adsorption on (2×2) 
surface unit cells. Eads means adsorption energy in eV 
. 

CO H2 

CO 
coverage 
[ML] 

Adsorption 
site 

Eads 
[eV] 

H2 
coverage 
[ML] 

Adsorption 
site 

Eads 
[eV] 

 

1 

atop 0.89  

1 

atop 1.30 

bridge 0.92 bridge 1.76 

hollow 0.91 hollow 1.63 

 

0.5 

atop 1.35  

0.5 

atop 1.52 

bridge 1.81 bridge 1.63 

hollow 1.82 hollow 1.82 

 

0.25 

atop 1.25  

0.25 

atop 1.56 

bridge 1.92 bridge 1.71 

hollow 1.38 hollow 1.23 

So, it appears, more of, that adsorption at bridge site 
is more energetic in the coverage range of [0.5,1.5] 
ML, while adsorption at hollow site is expected to be 
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more energetic in the coverage range [0.25,1.0] ML, 
and while adsorption at top site is expected to be 
more energetic at the coverage range of above 2 ML. 
With the adsorption of H2 , a similar pattern of 
adsorption as with that of CO is observed as can be 
seen from Table 2. Pronouncedly, however, the 
adsorption energetics of H2 is slightly larger than that 
of CO at 1 ML. These values are comparable to 
literatures [45], [46], while the calculations are being 
subjected to errors of about 0.2 eV [44]. In addition, 
the results in this work would also answer some of the 
concerns raised in the literatures [47], [46]. 
 

3.3 Pt(211) surface 
At 1 ML, 𝐸𝐸ads

𝐵𝐵 > 𝐸𝐸ads
𝐻𝐻 > 𝐸𝐸ads

𝑇𝑇 . Charge transfer 
between adsorbate CO and the surface Pt atoms is 
as much as 0.18e, see Table 3, while for between H2 
and the surface Pt atoms, as much as of 0.24e 
charge transfer can take place. The adsorption 
energetics of CO is slightly larger than that of the 
adsorption energetics of H2 . The adsorption energies 
at 1 ML for CO, the adsorption energies increase 
according to: adsorption on Pt(211) followed by 
adsorption on Pt(100) followed by adsorption on 
Pt(111) surface. Adsorption of H2 however has about 
the same energetics in all the surfaces. The biggest 
charge transfer on this surface is with CO, which is of 
about 0.37e. Our values of the adsorption energies of 
hydrogen is higher than those in literatures [2] but is 
in a good agreement elsewhere [45], [2]. 
With calculation using neural network approach of 
section 2.2, adsorption energies are estimated with 
variations and identicalness as shown in Figures 3 
and 4. With the adsorption of CO (Figure 3), on the 
Pt(110) surface, the adsorption energies are predicted 
to be about the same using both with the neural 
network approach of section 2.2 and the DFT method 
of section 2.1.The energy differences are less than 
0.01 eV for all the adsorption sites on this surface. 
The energy differences are investigated to be largest 
for adsorption at the ontop site, which is about 0.9 eV, 
and this happens on the Pt(100) surface. According to 
the energy differences, 𝛥𝛥𝛥𝛥 = 𝐸𝐸ads

NN − 𝐸𝐸ads
DFT, between 

the calculations using neural network and DFT 
methods, the variations in the energies are according 
to: on Pt(100) > Pt(111) > Pt(211) > Pt(110). 

Table 3: Adsorption of CO and H2 molecules on Pt 
(211) surface, as calculated using DFT method 
(section 2.1). Adsorbate coverage is given in mono-
layer (ML) where 1 ML means 1 adsorbate species 
per surface slab supercell. Thus, 1 ML means 
adsorption on (1×1) surface unit cells. Eads means 
adsorption energy in eV , ∆Qpt represents change in 
magnitude of charge of surface Pt atom in unit e, and 
∆Qads represents change in magnitude of charge of 
adsorbate atom in unit e. 

CO 

CO 
coverage 
[ML] 

Adsorption 
site 

Eads 
[eV] 

∆Qpt [e] ∆Qads [e] 

 

1 

atop 1.78 -0.11 +0.11 

bridge 2.08 -0.18 +0.18 

hollow 2.08 -0.17 +0.17 

H2 

H2 

coverage 
[ML] 

Adsorption 
site 

Eads 
[eV] 

∆Qpt [e] ∆Qads [e] 

 

1 

atop 1.43 -0.01 +0.01 

bridge 1.89 -0.06 +0.06 

hollow 1.60 -0.24 +0.24 

 

This means, more concerted effort on training of the 
ab-initio calculations is recommended for Pt(100), 
Pt(111), and Pt(211).  
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Figure 3: Energy differences (∆E) between adsorption 
energies of CO as calculated using the DFT (section 
2.1) and the neural network (section 2.2) methods. 
Adsorption energies are calculated for the lower 
indices of the Platinum surface, i.e., Pt(100), Pt(110), 
Pt(111), and Pt(211) surfaces, denoted respectively 
as (100), (110), (111), and (211) in the figures. On the 
left side (a) (red color and filled circle points), energy 
differences are plotted against surfaces while on the 
right side (b) (blue color and thin diamond points) , 
energy differences are plotted against adsorption 
sites.  

 

Figure 4: Energy differences (∆E) between adsorption 
energies of H2 as calculated using the DFT (section 
2.1) and the neural network (section 2.2) methods. 

Adsorption energies are calculated for the lower 
indices of the Platinum surface, i.e., Pt(100), Pt(110), 
Pt(111), and Pt(211) surfaces, denoted respectively 
as (100), (110), (111), and (211) in the figures. On the 
left side (a) (green color and thick hexagonal points), 
energy differences are plotted against surfaces while 
on the right side (b) (orange color and pentagonal 
points), energy differences are plotted against 
adsorption sites. 
With the adsorption of H2 , the least variation in ∆E is 
investigated on Pt(110) which means that the 
potential is well trained on this surface. ∆E has as 
much as 0.7 eV on Pt(211) surface, while it is as 
much as of 0.50 eV on Pt(100), and 0.35 eV on 
Pt(111) surfaces. This means for surfaces which 
show large variation in the energy differences (∆E), 
more training is needed. The influences of these on 
the adsorption sites is more pronounced with the atop 
site which has ∆E of about 0.65 eV followed by at 
hollow site by up to 0.40 eV, which in turn is followed 
by bridge site with about 0.15 eV. While the trends of 
∆E in Fig. 4 is similar with the trends in Fig. 3, the 
magnitudes of the energy differences in the former 
case is relatively smaller due to in part the smaller 
number of electrons contained in the H2 adsorbate 
when as compared to the CO adsorbate and which 
would in turn thus require more training efforts to get it 
right. Analysis and comparison of the charge transfers 
with the adsorption of the adsorbate molecules can be 
visualized as in the Fig.5. To achieve a well trained 
potential, more training efforts are often required to be 
done [35], [7]. Studies of the interactions of these 
molecules can be useful to remedy the efficiencies of 
performances this system as an application in fuel 
cells [48], [49]. 

4 CONCLUSION 

The outcomes of this study of adsorptions on platinum 
surfaces is summarized as follows.  
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Figure 5: Charges exchanges between surface atoms 
and adsorbates. a) Left side (pentagonal points and 
cyan color for the adsorption of CO on Pt surface). b) 
Right side (Filled circle points and magenta color for 
adsorption of H2 on Pt surface). 

• Adsorption energies in the range of [0.85, 
2.08] eV is investigated for adsorption of CO, 
while the adsorption energies in the range of 
[1.30, 1.90] eV is investigated for adsorption 
of hydrogen. 

• Charge transfers of upto 0.37e is investigated 
with adsorption of hydrogen while that of upto 
0.24e is investigated with adsorption of CO. 

• The molecules hydrogen and carbon 
monoxide react strongly with platinum 
surfaces. Such strong interactions in terms of 
adsorption energies and charges could mean 
facilitated electricity as of Figure 1 and a 
more likely formation of by-products as of 
equations (1)-(4). 

• There is a strong possibility that training the 
DFT potentials could very well be used in 
related problems thereby reducing the 
computing time demand in many future 
problems solving. 

• Since problems study in fuel cells require a 
more dynamic transport phenomena 

modelling than studying from statical point of 
view, such neural network method would 
have a favourable prospect to be a feasible 
method of dealing with problems in such 
systems. 

• Most stable surfaces are relatively less 
reactive means stepped surfaces provide 
more opportunities for reactions. 

• While still many more training efforts needed 
can be done, the current work explores many 
prospects of further studies quantitative and 
qualitative wise. 
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